STM/STS study of surface electronic density of states of Sr$_2$RuO$_4$ & Unconventional local transport characteristics in microfabricated Sr$_2$RuO$_4$–Ru eutectic crystals

AIST
Tokyo Univ. of Sci.
Hokkaido Univ.
Nagoya Univ.
Kyoto Univ.
Univ. Tokyo

Hiroshi Kambara
Satoshi Kashiwaya
Hiroshi Yaguchi
Yasuhiro Asano
Yukio Tanaka
Yoshiteru Maeno
Hiroshi Fukuyama
Introduction

Sr_2RuO_4 ($T_c = 1.5$ K)

Chiral p-wave superconductor (spin-triplet pairing) by Deguchi and Maeno

Time reversal symmetry breaking

$$\vec{d}(\vec{k}) = \hat{z} \Delta_0 (k_x \pm ik_y)$$

Spin orbital

$$(k_x + ik_y), (k_x - ik_y)$$

Existence of chiral domain

μSR Luke et al. (1998)

Kerr effect Xia et al. (2006)

Rich internal degrees of freedom in the Cooper pair!

Novel phenomena are predicted theoretically:

half quantum vortex, anomalous proximity effect, etc.

challenging subjects
Outline

What are the local electronic states and properties?

1. STM/STS study of local density of states
 - Surface sensitive
 - A cleaved surface (SrO-layer) does not show superconductivity.
 - Local characteristics extracted from bulk

2. Local transport characteristics of microfabricated crystals
 - Surface insensitive
 - Anomalous hysteretic feature in V-I characteristics suggests the existence of chiral domain

Sr$_2$RuO$_4$

STM image (5 nm × 5 nm)
1. STM/STS study of surface electronic density of states
STM and Tunnel spectra on a cleaved surface

Cleaved topmost surface is usually a SrO-layer.

Non-superconducting gap: $\Delta \sim 5$ meV (~ 50 K)
STM and Tunnel spectra on a cleaved surface

Cleaved topmost surface is usually a SrO-layer.

Non-superconducting gap: \(\Delta \sim 5 \text{ meV} \sim 50 \text{ K} \)

Electronic structure on a cleaved SrO-surface is different from that of superconductivity.
Cleaving-temperature dependence of Sr$_2$RuO$_4$

All samples were cleaved at ultrahigh vacuum. STM images were obtained at T~40 mK.

Recently, similar experiments were reported by Pennec et al., PRL (2008).

\[T_{\text{cleave}} = 7 \, \text{K} \]

Flat surface with atomic resolution

Non-superconducting gap

\[\Delta \sigma \approx \sqrt{|E - E_F|} \]

Anderson localization in 3D

Non-superconducting surface of Sr$_2$RuO$_4$

Junction resistance between SRO/SRO increases at $T < 25$ K
→ Non-superconducting surface layer

Surface-sensitive measurement is not straightforward to study the superconductivity of Sr$_2$RuO$_4$.
2. Unconventional local transport characteristics in microfabricated \(\text{Sr}_2\text{RuO}_4 \)-Ru eutectic crystals
Sr$_2$RuO$_4$ - Ru eutectic system ~3-K phase superconductivity~

Sr$_2$RuO$_4$ - Ru eutectics

Ru inclusion

10 µm

Maeno et al., PRL 81, 3765 (1998).

T ~ 3 K

3-K phase (S)

T > 3 K

3 > T > 1.5 K

(S-N-S)

weak link (N)

T < 1.5 K

(S-S'-S)

1.5-K phase (S')

p-wave superconducting junctions are naturally formed.
Transport characteristics in microfabricated \(\text{Sr}_2\text{RuO}_4\)-Ru junction

The surface state does not influence this 4-probe configuration.

Extraction of superconducting linkage channels without averaging over bulk sample.
Sample configurations \((I \parallel ab \text{ and } I \parallel c)\)

I \parallel ab

- Microbridge
- \(\text{Sr}_2\text{RuO}_4\)-Ru
- Sample 1

I \parallel c

- Slit
- \(\text{Sr}_2\text{RuO}_4\)-Ru
- Glue
- Sample 2

SIM image obtained after the top and side surfaces were slightly milled. FIB milling was done after transport measurements.
Anomalous hystereses are observed for both I//ab and I//c directions.

V-I & dV/dI-I characteristics (Anomalous hysteresis)

Negative dV/dI is not observed \rightarrow switching phenomena

Anomalous hystereses are observed for both I//ab and I//c directions.
How are V-I characteristics anomalous?

Anomalous features

1. Voltage decreases at I_{sw}.
2. It switches to a lower R_n (normal resistance) branch with larger I_c.
3. Opposite hysteresis loop compared to typical Josephson junction (JJ) s.

Sr$_2$RuO$_4$-Ru

Usual switching

Intrinsic JJs in Bi2212

NOT usual JJs!
Magnetic field effect

The curves are offset by -0.5 unit for clarity.

Anomalous hysteresis is NOT due to a magnetic vortex!

cf) $H_{c1}(0) \approx 70$ G (1.5-K phase)
Deguchi, Mao, Maeno, JPSJ(2004).
Anomalous J_c enhancement

In usual case,

$$R_{bridge} = \rho \frac{L}{S}$$

$$S = Wt$$

Critical current density: J_c

$$J_c = \frac{I_c}{S} = \text{const.}$$

 usual

Unusual!

Jc increases for small S.

In usual case,

- High J_c along edge
- Low J_c inside

Edge channels seem to be formed.

$\star J_c$ is not $J_c(0)$ at $T = 0$.

Graphs:

- Variation in thickness and width
- L/R_{bridge} vs. L/R_{bridge}
- J_c vs. S for different temperatures

Notes:

- $J_c(0) = 500$ A/cm2 for bulk pure Sr$_2$RuO$_4$ (by Deguchi and Maeno)

Equations:

- $S = Wt$
- $J_c = I_c/S = \text{const.}$
- $R_{bridge} = \rho \frac{L}{S}$

Variables:

- L: length
- R_{bridge}: bridge resistance
- ρ: resistivity
- S: area
- W: width
- t: thickness
- I_c: critical current
- J_c: critical current density
- T: temperature
- k_x, k_y: wavevectors
Possible origin of the anomalous hysteresis

Chiral domain wall motion through the 3-K phase \(k_x\) and 1.5-K phase \(k_x \pm i k_y\) coexistence region

(1) Initial state

(2) \(I > 0\)

Domain wall moves under DC current.

(3) \(I = I_{sw1}, I_{sw2}\)

\(k_x\)-phase flips

Frustration

No frustration

Frustration

pair potential for \(x\)

No frustration

\[V \]

\[I \]

\[I_{c0} \]

\[I'_{c0} \]

\[I''_{c0} \]
STM/STS at Sr$_2$RuO$_4$ surface

- Low temperature (T<100 K) cleaved surface (SrO-layer) shows non-superconducting gap. Room temperature cleaved surface shows disordered electronic states. The surface electronic states are different from those of bulk superconductivity.

Local transport measurement for microfabrication sample

- Microfabrication technique with FIB was applied to Sr$_2$RuO$_4$-Ru eutectic crystals. Local superconducting channels were successfully extracted.

- Anomalous hysteresis of V-I characteristics was observed for both I//ab and I//c directions. It suggests that internal degrees of freedom of the chiral p-wave state, Chiral domain wall motion by DC current is a possible origin of the anomalous hysteresis.