A05: Quantum crystal and ring exchange

Novel magnetic states induced by ring exchange

Members:

Tsutomu Momoi (RIKEN)
Kenn Kubo (Aoyama Gakuinn Univ.)
Seiji Miyashita (Univ. of Tokyo)
Hirokazu Tsunetsugu (ISSP, Univ. of Tokyo)
Takuma Ohashi (RIKEN → Osaka Univ.)
Masahiro Sato (RIKEN)
- Spin nematic/quadrupolar phases
 - S=1/2 frustrated ferromagnets
 - Spins triplet RVB state
 (T. Momoi)

- Multiple-spin exchange model on the triangular lattice
 - 2D solid 3He
 (T. Momoi, K. Kubo)

- Spin dynamics, spin crossover
 (S. Miyashita)

- Supersolid

- Mott transition in frustrated electron systems
 - Reentrant behavior
 (T. Ohashi, T. Momoi, H. Tsunetsugu, N. Kawakami)

- 2D solid 3He

- Ring exchange

- Spin dynamics, spin crossover (S. Miyashita)

- Supersolid

- Magnetism in cold atoms (S. Miyashita)
Collaborators:

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philippe Sindzingre</td>
<td>Univ. of P. & M. Curie</td>
</tr>
<tr>
<td>Kenn Kubo</td>
<td>Aoyama Gakuinn Univ.</td>
</tr>
<tr>
<td>Nic Shannon</td>
<td>Bristol Univ.</td>
</tr>
<tr>
<td>Ryuichi Shindou</td>
<td>RIKEN</td>
</tr>
</tbody>
</table>

Outline

1. **Introduction:**
 - Spin nematic order
 - BEC of bound magnon pairs
 - Spin-triplet RVB state

2. **Multiple-spin exchange model: J-J₄-J₅-J₆ model**
 - Spin nematic phase, 1/2 magnetization plateau

3. **Summary**
Introduction: Competition between FM and AF orders

Nearest-neighbor FM interaction J_1

+ competing antiferromagnetic interaction J_2

Emergence of new quantum phase
Frustrated magnets with 1st neighbor FM interaction

Triangles lattice
- 2D solid He3
- Ring exchange

Square lattice
- Pb$_2$VO(PO$_4$)$_2$ (E. Kaul et al.)
- (CuCl)LaNb$_2$O$_7$, (CuBr)A$_2$Nb$_3$O$_{10}$

1D zigzag lattice
- edge-sharing chain cuprates
 - LiCuVO$_4$, LiCu$_2$O$_2$, Rb$_2$Cu$_2$Mo$_3$O$_{12}$, Li$_2$ZrCuO$_4$

Kanamori-Goodenough Rule
- FM nearest neighbor J_1
- AF next nearest neighbor J_2
Spin nematic phase in between FM and AF phases

J_1-J_2 model

$$H = J_1 \sum_{\text{N.N.}} S_i \cdot S_j + J_2 \sum_{\text{N.N.N.}} S_i \cdot S_j,$$

Square lattice

1D zigzag lattice

N. Shannon, TM, and P. Sindzingre,
PRL 96, 027213 (2006).

T. Hikihara, L. Kecke, TM, and A. Furusaki, PRB (2008)
M. Sato, TM, and A. Furusaki, PRB (2009)

Poster P40

Nematic phase
FM J_1, AF J_2

FM nearest neighbor J_1
AF next nearest neighbor J_2
Characteristics of spin nematic order in spin-1/2 frustrated ferromagnets

- uniform state, i.e. no crystallization
- no spin order $\langle \vec{S}_i \rangle = 0$ at $h=0$
 or no transverse spin order $\langle S_i^x \rangle = \langle S_i^y \rangle = 0$ for $h>0$
- gapless excitations
- spin quadrupolar order

$$\langle Q_{ij}^{x^2-y^2} \rangle = \langle S_i^x S_j^x - S_i^y S_j^y \rangle, \quad \langle Q_{ij}^{xy} \rangle = \langle S_i^x S_j^y + S_i^y S_j^x \rangle$$

Spin nematic order can be regarded as

“BEC of bound magnon pairs with $k=(0,0)$”

A. V. Chubukov, PRB (1991)

$$\langle S^-_i S^-_j \rangle = Q e^{2i\theta}$$

Spin quadrupolar order
Why bound magnon pairs are stable in frustrated FM?

Near saturation field,

1. Individual magnons are nearly localized

 In square-lattice J_1-J_2 model,
 zero line modes at $J_2/|J_1| = ½$.

2. Two (or three) magnon bound states are mobile and stable

 In square-lattice J_1-J_2 model,
 d-wave two-magnon bound states
 with $k = (0,0)$ are most favored.

Coherent motion
Bond-nematic ordered state in S=1/2 magnets

Roughly speaking,…..

Linear combination of all possible configurations of $S^z = \pm 1$ dimers

$$\sum_{\text{dimer configuration}} (-1)^{\# \text{ of vertical } S^z = 1 \text{ dimers}} \left| \text{dimers with } S^z = \pm 1 \right>$$

\[= \quad -\quad + \quad - \quad + \quad \ldots \ldots \quad \text{entangled state} \]

cf. Spin quadrupolar order state in $S = 1$ bilinear-biquadratic model

wave function $\approx \bigotimes_i |\phi_i> = \left< Q_i^{x^2-y^2} \right> = \left< S_i^x S_i^x - S_i^y S_i^y \right>$

product state $\left< Q_i^{xy} \right> = \left< S_i^x S_i^y + S_i^y S_i^x \right>$
Slave boson formulation of spin nematic states in frustrated ferromagnets

R. Shindou and TM, PRB (2009)

Fermion representation

\[S_j^\mu = \frac{1}{2} f_{j\alpha}^{\dagger} \left[\sigma_\mu \right]_{\alpha\beta} f_{j\beta} \quad (\mu = x, y, z) \]

Local constraint

\[f_{j,\alpha}^{\dagger} f_{j,\alpha} = 1 \]

\[f_{j\uparrow}, f_{j\downarrow} \quad \text{fermion operators} \]

Using Hubbard-Stratonovich transformation, we can decouple FM interaction into triplet pairing

\[-4S_i \cdot S_j \rightarrow -|D_{ij}|^2 + \sum_{\mu=x,y,z} [\psi_i^{\dagger} U_{ij,\mu} \psi_j \tau_\mu^{\dagger}] \]

where \(D_{ij} \) denote d-vectors of triplet pairing

\[\hat{\Delta}_{jj} = \left(\begin{array}{cc} \langle f_{j\uparrow}^{\dagger} f_{i\uparrow} \rangle & \langle f_{j\uparrow}^{\dagger} f_{i\downarrow} \rangle \\ \langle f_{j\downarrow}^{\dagger} f_{i\uparrow} \rangle & \langle f_{j\downarrow}^{\dagger} f_{i\downarrow} \rangle \end{array} \right) = \left(\begin{array}{cc} -D_{z}^x + iD_{z}^y & D_{z}^2 \\ D_{z}^2 & D_{z}^x + iD_{z}^y \end{array} \right) \]

In mean-field approximation, FM interaction prefers triplet pairing.
Theoretical description of bond-nematic states

When triplet pairing appears, spin space becomes anisotropic.

Quadrupolar order parameter in mean-field approximation

\[-2Q_{ij}^{\mu\nu} = D_{ij}^{\mu} D_{ij}^{\nu} - \frac{\delta_{ij}}{3} |D_{ij}|^2 + \text{H.c.} \]

For example,

\[\langle S_i^- S_j^- \rangle = \langle f_{j\uparrow} f_{j\uparrow}^\dagger f_{i\downarrow}^\dagger f_{i\downarrow} \rangle = \langle f_{j\uparrow} f_{j\uparrow}^\dagger \rangle^* \langle f_{i\downarrow} f_{i\downarrow} \rangle = - (D_{ij}^x)^2 + (D_{ij}^y)^2 - i(D_{ij}^x D_{ij}^y + D_{ij}^y D_{ij}^x) \]

\[Q_{ij}^{\mu\nu}(r) = d_{ij}^{\mu}(r) d_{ij}^{\nu}(r) - \frac{\delta_{ij}}{3} |d(r)| \]

cf. nematic order in liquid crystals, \(d(r) \): director vectors

director – D-vector correspondence
Mean-field approximation of square lattice J_1-J_2 model

New phase

triplet-pairing on FM interactions and hopping amplitude on AF interactions

spin-triple resonating valence bond state

(spinn-triplet RVB state)
This mean-field solution has the same magnetic structure as d-wave bond nematic state.

BW state

\[d(k) \equiv \hat{x} \sin k_x + \hat{y} \sin k_y. \]

\[
D^x_{j'l} = i \left(\delta_{j',l+e_x} - \delta_{j',l-e_x} \right)
\]

\[
D^y_{j'l} = i \left(\delta_{j',l+e_y} - \delta_{j',l-e_y} \right)
\]

N. Shannon, TM and P. Sindzingre ('06)

d-wave bond nematic state

\[Q_{xx} - Q_{yy} > 0 \]

\[Q_{xx} - Q_{yy} < 0 \]
Low energy excitations around the BW state

- Spin fluctuation has gapless Nambu-Goldstone modes
- Individual spinon excitations have a full gap

\[2E_{\pm} \equiv \pm \sqrt{J_1^2 D^2 (\sin^2 k_x + \sin^2 k_y) + 4J_2^2 (\chi^2 \cos^2 k_x \cos^2 k_y + \eta^2 \sin^2 k_x \sin^2 k_y)}. \]

- Gauge fluctuation also has a gap. (a gapped Z_2 state)

Perspectives

Variational Monte Carlo simulation
Magnetism of two-dimensional solid 3He on graphite

4/7 phase in 2$^{\text{nd}}$ layer of 2D solid 3He on graphite

- gapless spin liquid
 - specific heat
 - linear specific heat
 - (cf. 2D FM)
 - double peak structure
- magnetization plateau at 1/2

- No drop of susceptibility down to 10μK
Theoretical model: multiple-spin exchange model

Three spin exchange is dominant and **ferromagnetic**

\[P_3 + P_3^{-1} = P_2(i,j) + P_2(j,k) + P_2(k,i) \]

→ effective two spin exchange is ferromagnetic

\(J = J_2 - 2J_3 \)

Parameter fitting

\(J = 2.8, \quad J_4 = 1.4, \quad J_5 = 0.45, \quad J_6 = 1.25 \text{ (mK)} \)
In case of two- and four-spin exchange model \((J-J_4)\) model

In a strong \(J_4\) regime \(J_4/|J| = 1/2\)

- At zero field, the ground state doesn’t have any order and it has a large spin gap.

- Magnetization process has a wide plateau at \(m/m_{\text{sat}} = 1/2\), which comes from \(uuud\) spin-density wave structure

 TM, H. Sakamoto, and K. Kubo, PRB (1999)
In case of two- and four-spin exchange model \((J-J_4 \text{ model})\)

Near the border of FM phase \(0.24 < K/|J| < 0.28\)

- \(m > 0\),
 - condensation of 3 magnon bound states
 - “Triatic order” (octupolar order)

- \(m = 0\),
 - strong competition between nematic and triatic correlations

\[
\langle S_i^- S_{i+e_1}^- S_{i+e_2}^- \rangle = \phi e^{3i\theta}
\]

\[
\langle S_i^x \rangle = \langle S_i^y \rangle = 0
\]

\(\theta = \phi - \pi \)

Images: Fully polarized triangle, CAF, TRIATIC

- \(J_4/|J|=0.5\), \(J_5/|J|=0.16\), \(J_6/|J|=0.44\)

Collin et al.
In the classical limit \((S \to \infty)\)

Mean-field phase diagram

- In the quantum case \((S = 1/2)\)

One magnon excitations

\[\varepsilon(k) = h - 2\left(J_2 + 4J_4 - 10J_5 + 2J_6\right) \times \left\{3 - \cos k \cdot e_1 - \cos k \cdot e_2 - \cos k \cdot e_3\right\} \]

have zero flat mode at mean-field phase boundary.

Individual magnons are localized!
Magnon instability to the FM (fully polarized) state at saturation field

$J_2 - J_4$ model

(case of $J_5 = J_6 = 0$)

space rotation $R_{\pi/3} \rightarrow -1$

Antiferro-triatic state

space rotation $R_{\pi/3} \rightarrow \exp(\pm i2\pi/3)$

$d + id$ wave

Chiral (?) nematic state

3 sublattice structure

Canted AF

$J_2 = -2, 3J_6 = 8J_5$

J_5

J_4

FM

2 mag.

1 mag.

3 mag. (F)

3 mag. (AF)
Numerical results

Instability at saturation

Condensation of $d+i d$-wave magnon pairs (BEC)

magnetization process

$\Delta S^z = 2$

$\Delta S^z = 3$
Condensation of bosons with two spices

d\pm i\sigma\text{-wave magnon pairs}

\[j = \exp\left(\pm i \frac{2\pi}{3} \right) \quad (\pm: \text{chirality}) \]

wave number \(k = (0,0) \)
double-fold degeneracy with chirality

density imbalance \(n_+ > n_- \)

chiral nematic order

non-chiral nematic order

\[O_{d+id} = \sum_i \left(S_i^- S_{i+e_1}^- + j S_i^- S_{i+e_2}^- + j^2 S_i^- S_{i+e_3}^- \right) \]

\[O_{d+id} - O_{d-id} \]
Chiral symmetry breaking?

Chiral symmetry breaking acquires double-fold degeneracy in the low-lying states.

Answer: No.

However, some of them are not degenerate → no chiral symmetry breaking.
Possible nematic orders induced by d+id-wave magnon pairs

(a) Chiral nematic order

\[
S = \frac{N}{2} - 2(3\pi - 2)
\]

Chiral nematic order

\[
R_{2\pi/3} = j, j^2, R_\pi = 1
\]

(b) Non-chiral nematic orders

\[
S = \frac{N}{2} - 2(3\pi - 1)
\]

Non-chiral nematic order \((Q_+ + Q_-)\)

\[
R_{2\pi/3} = j, j^2, R_\pi = 1
\]

Non-chiral nematic order \((Q_+ - Q_-)\)

\[
R_{2\pi/3} = j, j^2, R_\pi = 1
\]
Magnetization plateau at $m/m_{\text{sat}} = 1/2$

Symmetries are consistent with BEC of bound magnon pairs

No magnon bound state
Crossover from FM interaction dominant system to AF ring exchange dominant system

\[\frac{m}{m_{sat}} = \frac{1}{2} \]

SDW (uuud structure)

\[J_2 = -2, \, 3J_6 = 8J_5 \]

\[J_{eff} = J - 10J_5 + 2J_6 \]
Phase diagram

- Still large size dependence remains
- Too large J_6?
Another magnetization plateau?

SDW at $m/m_{\text{sat}} = 5/9$

9-fold degeneracy

- Unit vectors $(3, 0)$, $(3/2, 3\sqrt{3}/2)$
- Reciprocal vectors $(2\pi/3, 2\pi/3\sqrt{3})$, $(0, 4\pi/3\sqrt{3})$

"particle" = two magnon bound state
Conclusions

Spin nematic phase appears in spin-1/2 frustrated ferromagnets

- BEC of bound magnon pairs
- spin-triplet RVB state

Multiple-spin exchange model on the triangular lattice

- The 4/7 phase of solid 3He film is in the proximity to the edge of 1/2-plateau.
- Non-plateau states show condensation of $d+id$ wave magnon pairs, which leads to a non-chiral nematic phase
- Low magnetization region seems to support magnon pairing, but there are still large finite-size effects…
How it looks in experiments.

- uniform
- no spin order
- gapless excitations
- magnon pairing (spin-triplet pairing)
- no lattice distortion
- no Bragg peak in Neutron scattering
- specific heat
- -- possibly double peak structure --
- finite susceptibility

Unusual magnon excitations in $S(k, \omega)$

1d case

$h \parallel z$

P. 40 M. Sato, TM, and A. Furusaki, PRB 80, 064410 (2009)